Học hàm, Học vị, Họ tên : Th.S. Ngô Văn Linh
Số điện thoại : (+84-24) 38696124
Email :
Website cá nhân : https://users.soict.hust.edu.vn/linhnv/
Địa chỉ nơi làm việc : P.1002B1
Fax:
Giới thiệu
Lĩnh vực nghiên cứu

Học máy

Khai phá dữ liệu

Hệ gợi ý

Các hướng nghiên cứu
Các dự án đã và đang thực hiện
Các công trình NC đã công bố
  1. Van-Son Nguyen, Duc-Tung Nguyen, Linh Ngo Van, Khoat Than, “Infinite Dropout for training Bayesian models from data streams”, In Proceedings of IEEE International Conference on Big Data (BigData 2019), Los Angeles, CA, USA, 2019.
  2. Tuan Anh Phan, Nhat Nguyen Trong, Duong Bui, Linh Van Ngo, and Khoat Than, “From Implicit to Explicit Feedback: A deep neural network for modeling the sequential behaviors of online users”, In Proceeding of the Asian Conference on Machine Learning (ACML), 2019.
  3. Cuong Ha-Nhat, Dang Tran, Linh Ngo Van, Khoat Than, “Eliminating overfitting of probabilistic topic models on short and noisy text: The role of Dropout”, International Journal of Approximate Reasoning, Springer, 2019.
  4. Linh The Nguyen, Linh Van Ngo, Khoat Than and Thien Huu Nguyen, “Employing the Correspondence of Relations and Connectives to Identify Implicit Discourse Relations via Label Embeddings”, In Proceeding of the Association for Computational Linguistics (ACL), 2019.
  5. Thanh Hai Hoang, Anh Phan Tuan, Linh Ngo Van, Khoat Than, “Enriching user representation in Neural Matrix Factorization”, In Proceedings of RIVF. IEEE, 2019.
  6. Khoat Than, Xuan Bui, Tung Nguyen-Trong, Khang Truong, Son Nguyen, Bach Tran, Linh Ngo Van, and Anh Nguyen-Duc. “How to make a machine learn continuously: a tutorial of the Bayesian approach.” In Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, vol. 11006, p. 110060I. 2019.
  7. Hoa Le Minh, Son Ta Cong, Quyen Pham The, Ngo Van Linh, Khoat Than, “Collaborative Topic Model for Poisson distributed ratings”, accepted in International Journal of Approximate Reasoning (IJA), 2018.
  8. Ngo Van Linh, Nguyen Kim Anh, Khoat Than, Chien Nguyen Dang, “An Effective and Interpretable Method for Document Classification”, Knowledge and Information Systems journal (KAIS), 50(3), 763-793, 2017.
  9. Duc-Anh Nguyen, Kim Anh Nguyen, Ngo Van Linh, Khoat Than, “Keeping priors in streaming Bayesian learning”, In Proceedings of the 21st Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pp. 247-258, 2017.
  10. Vu Le, Chien Phung, Cuong Vu, Ngo Van Linh, Khoat Than, “Streaming Sentiment-Aspect Analysis”, in Proceeding of the International Conference on Computing and Communication Technologies (RIVF), pp 181-186, 2016
  11. Mai Tien Khai, Mai Anh Sang, Nguyen Kim Anh, Ngo Van Linh, Khoat Than, “Enabling Hierarchical Dirichlet Processes to work better for short texts at large scale” in Proceeding of the 20th Pacific-Asia Conference (PAKDD), pp. 431-442, 2016.
  12. Ngo Van Linh, Nguyen Kim Anh, Khoat Than, and Nguyen Nguyen Tat. ”Effective and Interpretable Document Classification Using Distinctly Labeled Dirichlet Process Mixture Models of von Mises-Fisher Distributions” In proceeding of 20th Database Systems for Advanced Applications Conference (DASFAA), pp. 139-153, 2015.
  13. Ngo Van Linh, Nguyen Kim Anh, and Khoat Than. "An Effective NMF-Based Method for Supervised Dimension Reduction" Knowledge and Systems Engineering (KSE), pp.93-104, 2015.
  14. Anh Nguyen Kim, Nguyen Khac Toi, and Ngo Van Linh. "An interpretable method for text summarization based on simplicial non-negative matrix factorization" in Proceeding of the Symposium on Information and Communication Technology (SoICT), pp.57-64, 2014.
  15. Nguyen Thi Kim Anh, Ngo Van Linh, Nguyen Khac Toi, Nguyen The Tam, "Multi-labeled Document Classiffication using Semi-supervised Mixture Model of Watson distributions on Document Manifold" In proceeding of the International Conference of Soft Computing and Pattern Recognition (SoCPaR), pp.129-134, 2013.
  16. Nguyen Thi Kim Anh, Nguyen The Tam, Ngo Van Linh, "Document Clustering using Mixture Model of von Mises-Fisher Distributions on Document Manifold" In proceeding of the International Conference of Soft Computing and Pattern Recognition (SoCPaR), pp. 146-151, 2013.
  17. Nguyen Kim Anh, Ngo Van Linh, Le Hong Ky, Nguyen The Tam, "Document classiffication using semi-supervised mixture model of von Mises-Fisher distributions on document manifold" In proceeding of the Symposium on Information and Communication Technology (SoICT), pp. 94-100, 2013.
  18. Nguyen Kim Anh, Nguyen The Tam, Ngo Van Linh, "Document clustering using dirichlet process mixture model of von Mises-Fisher distributions" In proceeding of the Symposium on Information and Communication Technology (SoICT), pp. 131-138, 2013.
  19. Ngo Van Linh, Nguyen Kim Anh, Cao Manh Dat, "Improving Vietnamese Web Page Classiffication by Combining Hybrid Feature Selection and Label Propagation with Link Information" In Proceeding of the International Conference on Context-Aware Systems and Applications (ICCASA), pp.324-334, 2012.
  20. Nguyen Kim Anh, Vu Minh Thanh, Ngo Van Linh, "Efficient label propagation for classiffication on information networks" In proceeding of the Symposium on Information and Communication Technology (SoICT), pp. 41-46, 2012.
Các học phần tham gia giảng dạy

Trí tuệ nhân tạo

Học máy

 

Các sản phẩm ứng dụng
Nghiên cứu sinh đang hướng dẫn